
An enterprise of:

CLASSIEfier:

From scikit-learn to
SageMaker in multilabel
text classification

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 2

CLASSIEfier: From scikit-learn to SageMaker in

multilabel text classification

An Our Community Innovation Lab paper,

January 2020

Author: Paola Oliva-Altamirano, Data Scientist

This whitepaper is produced by the Our

Community Innovation Lab – the engine

room for mobilising data to drive social

change.

Our team of data scientists, IT engineers and

domain knowledge experts is working to

bring

to life ideas to do old things better and new

things first.

www.ourcommunity.com.au/innovationlab

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 3

Summary

Tracking the flow of funding to and within the Australian social sector has historically

been difficult because of inconsistencies in categorisation (or the absence of

categorisation entirely!).

Our Community, a highly ranked accredited B Corporation founded in Melbourne,

Australia, developed CLASSIE to address this problem. Having developed CLASSIE as a

universal classification system for Australian social sector initiatives, Our Community is

now developing a machine learning algorithm called CLASSIEfier to reduce the need for

manual classification. In the long-term, CLASSIEfier will help answer fundamental

questions: Where is the money going? What impact is it having? And is the money going

to those most in need?

Here we present the results of our experiments with different model training and

deployment options; a) Using classical machine learning packages such as scikit-

learning (python) on a local computer and b) Using pre-built models in AWS SageMaker.

SageMaker has considerable advantages over classical training and deployment, but

raises concerns over bias control and model debugging. Can the black box become

even darker?

In this article we also discuss the importance of defining the right scoring technique

when designing fair algorithms, and demonstrate how accuracy does not always give

you the right answer.

Note: This is the second article in a series about CLASSIEfier. For information about

algorithm design and data exploration please go to CLASSIEfier: Using machine learning

to paint a picture of social sector trends.

CLASSIE and CLASSIEfier

CLASSIEfier is a supervised machine learning algorithm designed to classify social

sector text. It was initially intended to classify grant applications but is now functional for

any text, including project summaries, fundraising campaign descriptions, organisation

mission statements, and others (see a whole description of the algorithm here).

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 4

The algorithm categorises text by subjects and population (the latter category is known

as 'beneficiaries' in the case of grant applications) according to the Classification system

for Social Sector Initiatives and Entities (CLASSIE).

CLASSIE is a hierarchical taxonomy, comprising three levels for populations and four

levels for subjects. Each level provides additional detail. For example, a project designed

to provide services for people with autism spectrum disorder might be classified as

follows: Health (level one) > Diseases and conditions (level two) > Brain and nervous

system disorders (level three) > Autism (level four). Each classification is correct, but the

higher the level, the more detailed is the classification.

Often text will generate more than one accurate subject label and more than one

beneficiary label; in machine learning this is known as multilabel.

These two characteristics - hierarchical and multilabel classification - create huge

challenges for CLASSIEfier to overcome (see this video for more detail).

CLASSIEfier early stages – classical machine learning

The first version of CLASSIEfier was trained on my local computer using Python’s most

common machine learning library, scikit-learn. This library holds a variety of prebuilt

supervised and unsupervised models that can be used by anyone free of charge. I found

that the most suitable models for CLASSIEfier were Nearest Neighbor (known as KNN)

and Support Vector Machine (known as SVC), mostly because these algorithms have in-

built ways to deal with multilabel classification.

KNN gives more accurate predictions, and lets me do really fast training, which is

advantageous when you are trying different parameters, but once trained the model is

very slow at the moment of making predictions (it's a "lazy learner"). SVC, on the other

hand, is an "eager learning" algorithm. It is very slow when training but much faster than

KNN when making predictions. I used both models in the training process and used SVC

as the final option for predictions.

A frequent question I get when talking about model training is: What are the best/most

common values to use in model parameters (n_neighbors, in the case of KNN, and C and

gamma, in the case of SVC)? You can use hyperparameter tuning to answer this

question. However, the hyperparameter tuning gives you a set of parameters that

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 5

achieve higher accuracy, which is not necessarily the ultimate answer that you are

looking for. What is accuracy anyway? Sometimes accuracy is not the best way to

measure the success of your algorithm, it just shows how truthful the algorithm is to the

data you fed in initially. What if the data is not good enough? But that is a subject for a

future blog post.

With CLASSIEfier I learned (the hard way) that the “data-dependent parameters” were

more influential in the final classifications than the model parameters - i.e. the maximum

number of words needed per document, the minimum number of documents per label,

whether or not the text should be pre-processed. In the end, I landed on a maximum of

3000 characters per document (around 500 words), a minimum of 10,000 documents

per label, and concluded unprocessed text gave better context. For example, 'swimmer'

refers to 'professional swimmer' (beneficiary) while 'swim' refers to a 'recreational

activity' (subject). Needless to say, more words and more documents made the process

slower thus I was always looking for a bare minimum.

The way you convert words into numbers (so that the model can use mathematical

equations) is also really important. I used TF-IDF and found that TF-IDF parameters

make a big difference in processing time, and final results. I found that using a max_df of

20% was the best option, i.e. ignore words that appear in more than 20% of the

documents. Why? If I have 17 labels, and I am training with an equal number of

documents per label, only 5% of the documents will have common 'health' (a label)

words. However due to the multilabel nature of the text, this 5% might overlap with

another 10% of documents, so I used 20% to be in a safe zone. Words that are in more

than 20% of the documents are just noise.

Snapshot of CLASSIEfier’s log on data and model parameter tuning (not complete)

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 6

CLASSIEfier Deployment

Disclaimer: All my deployment testing was done with AWS because our in-house

application, SmartyGrants, was already using AWS. Other cloud services could be as good

as AWS for this kind of task but I have not tested them myself.

As expected, deploying CLASSIEfier was the most difficult task. Why? Because

CLASSIEfier is an extremely complicated algorithm (see this video for more detail). It is a

combination of one model per level and some keyword-matching. Most of the examples

found online use a nice lambda function (e.g. here) with a clean, light model. That was

not possible in my case.

In general, when deploying a model with AWS lambda you follow these steps:

1. Wrap the model and the libraries used by the model in a docker container.

2. Use Flask to create an API (code) which will read the input text, call the model,

predict and send a prediction.

3. Transfer that code to AWS lambda, zappa can help with that.

4. Deploy! Lambda will create an endpoint that you can later link to AWS API

Gateway. That endpoint can be plugged to an application and then you can make

predictions live.

Easy! But not for me. Mostly because CLASSIEfier is a combination of two models (one

for level 1 and one for level 2) and some keyword-matching (for level 3 and 4). These are

some of the challenges I faced when I tried this (and these are common challenges):

• The libraries I used to train my model sometimes were not compatible with zappa

or flask or docker. Really painful! How did I overcome this? I had to retrain the

model using the libraries’ versions requested by the other applications.

• Lambda is designed to deal with light models and it has space and memory

limitations. CLASSIEfier is above those limits. There are some hacks but they are

tedious to implement. The alternative was to host the model in an EC2 AWS

instance and create an endpoint from there. That’s a different procedure and is

not free.

• Every time CLASSIEfier is updated, I have to go through all those steps all over

again.

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 7

Moving to the Cloud, the beauty of SageMaker

Disclaimer: SageMaker was my first test, for the reason mentioned above. Also, in this

option you need to pay for the live endpoints, it is not free.

After trying the previous option over a span of two weeks it was natural to give

SageMaker a go. SageMaker is a virtual machine hosted in an AWS instance. Here you

can create your own Jupyter Notebooks and from the Notebooks you can train and

deploy models. SageMaker in the background creates docker containers, EC2 instances

and the lambda functions needed to deploy your model. You don’t need to go through

the hazards of matching library versions or dealing with lambda limitations.

First, I tried to bring my original scikit-learn models into SageMaker but it was easier to

rebuild the model from scratch using the in-built algorithms – Blazing Text, in this case.

Since I had already found the ideal “data-dependent parameters” it took me just a

couple of days to convert my training data to the SageMaker format and retrain the

model.

Deploying in SageMaker is literally one line of code. The steps here were:

1. SageMaker creates an endpoint, that endpoint can be plugged to your

application and make predictions live. In the case of CLASSIEfier I have more than

one model; therefore, more than one endpoint was created, thus extra steps

were needed.

2. I created an API/wrapper that will join the endpoints and keyword-matching to a

final classification. Chalice helped with that.

3. Deploying!

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 8

Snapshot of CLASSIEfier’s deployment flow

Benefits of using AWS SageMaker:

• The whole experience of training, testing and deploying models is pain-free.

SageMaker takes care of everything in the background, even optimising the right

model parameters when training, keeping libraries consistent when creating

docker containers, and optimising the size of the models.

You only need to tell SageMaker what you want. What model? How much

computer power? Where is the training data set sitting? What model parameters

do you want? See the Notebook example below:

Snapshot of CLASSIEfier’s training and deployment SageMaker Notebook (not complete)

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 9

• The BlazingText model is performing as well as the scikit-learn local models.

• I can access the Jupyter Notebooks from any computer by using the AWS

console. This is really handy when you work from home or when you travel often.

• CLASSIEfier updates are easy to apply just by re-running the Jupyter Notebooks.

Drawbacks of using AWS SageMaker:

• SageMaker takes care of everything in the background! As much as this is an

advantage this can also be a disadvantage. It means that the black box is

becoming darker.

For example:

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 10

1. It is a disadvantage if you have not trained models from scratch before. A

junior data scientist will not understand what is happening behind the scenes.

This raises a range of questions: How do optimisation and parallelisation

work? How much weight do different model parameters have over the

model? How are the words being converted to number space to train the

model? etc.

2. It is very difficult to identify biases and bugs in this environment. The only

measurement you get is accuracy and other scores, which do not necessarily

tell you if your model is biased or giving wrong predictions. If you discover

that your model is wrong, it will be difficult to debug.

The only reason why it was so simple for me to use SageMaker is because I knew

the training data in detail, and when I found suspicious results I could loop back

to the data and fix it.

• I couldn’t find an in-build SageMaker algorithm that deals with multilabel

classification. To train in Blazing text I had to repeat the multilabel documents. For

example, if a text is to be classified 'health' and also 'arts and recreation', I label

the text 'health' then I repeat the document and label it 'arts and recreation'. This

makes the training data set heavier and the training and prediction process

slower.

It also affects the final score. In the previous example, instead of getting a 90%

probability of being 'health and arts and recreation', I get 50% probability of being

'health' and 50% probability of being 'arts and recreation'.

I fixed this by writing a scoring algorithm that normalises the data. This is not ideal

but it serves the purpose.

• It is not free.

Conclusion:

SageMaker is a great tool for senior Data Scientists who know well how machine

learning works and know what to expect from model training and deployment. If you are

thinking of using SageMaker you need to be hyperaware of model and data biases and

CLASSIEfier: From classical to cloud based machine learning (multilabel)

Page | 11

know the training data in detail to avoid bad AI design. For example, if CLASSIEfier

provides marginally wrong classifications, such as nesting 'kids recreational activities'

under 'sport professionals' this could have serious consequences. Grantmakers might

think that they are supporting too many professional sport causes and cut down the

funding to those areas, when in reality they were simply funding kids. Overall, though,

SageMaker, when used carefully, can save you a lot of time and give you a pain-free

machine learning journey.

It's worth mentioning that besides AWS, there are other cloud providers, such as Google

or Microsoft, who offer similar services to SageMaker (e.g. Google Datalab, Microsoft

Azure Machine Learning). I encourage you to try as many of them as possible and pick

the one most suitable to your case.

Do not forget that cloud-based machine learning services will have a monthly cost and

you need to have a budget for it (or use free-trial accounts for testing).

Author

Paola Oliva-Altamirano - Data Scientist, Our Community

Looking to learn more? Visit our Innovation Lab page. Ideas? Feel free to reach

out!

With the help of:

• Kathy Richardson – Executive Director, Our Community

• Sarah Barker – Director of Data Intelligence, Our Community

• Nathan Mifsud – Data scientist, Our Community

